ELECTRICAL CIRCUIT ANALYSIS LAB

Course Code	19EE3351	Year	Π	Semester	Ι
Course Category	Program Core	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisite	BEEE Lab (19ES1151)
Continuous Internal Evaluation:		Semester End Evaluation:	50	Total Marks:	75

Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to					
CO1	Inspect network theorems.					
CO2	Plot the frequency response of series RLC circuits and their resonance conditions.					
CO3	Determine two port network parameters and self, mutual inductance of coupled					
	circuits.					
CO4	Analyze three phase power drawn by balanced circuits.					
CO5	Simulate and analyze electrical circuits using Pspice tools.					

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7		PO9	PO10	PO12	PSO1	PSO2
CO1	3	3		2					1		1	3	2
CO2	3	3		2					1		1	3	2
CO3	3	3		2					1		1	3	2
CO4	3	3		2					1		1	3	2
CO5	3	3		2	2				1		2	3	2

	Syllabus					
Expt.	Contents	Mapped				
No.						
	PART-A (Any Eight Experiments)					
1	Verification of Maximum Power Transfer Theorem	CO1				
2	Verification of Reciprocity Theorem					
3	Verification of Millman's Theorem					
4	Verification of Compensation Theorem					
5	Series and Parallel Resonance with frequency variations	CO2				
6	Determination of Self, Mutual Inductances and Coefficient of coupling	CO3				
7	Determination of impedance and admittance Parameters					
8	Determination of Transmission and hybrid parameters					
9	Measurement of Active & Reactive Power using two wattmeter method	CO4				
10	Measurement of Reactive Power using one wattmeter method					

PA	RT-B: PSPICE SIMULATION OF ELECTRIC CIRCUITS (Any Two Experiments)	
11	Mesh and Nodal Analysis using PSpice	

CO5

12 Verification of Thevenin's and Norton's Theorem using PSpice

13 Verification of Superposition theorem using PSpice

14 DC Transient response using PSpice

15 AC Transient response using PSpice

Learning Resources

Text Books

- 1. Charles K.Alexander, Mathew N.O.Sadiku, "Fundamentals of Electric Circuits" (Fifth Edition), Tata McGraw-Hill.
- 2. Sudhakar and Shyammohan S Palli, Circuits and Networks: Analysis and Synthesis, Fifth Edition, McGraw-Hill Education.